遗传算法代码 基因遗传算法代码

时间:2023-05-03 09:20/span> 作者:tiger 分类: 新知 浏览:2304 评论:0

遗传算法也成进化算法,该算法受到达尔文进化论的启发提出的一种启发式搜索算法。

进化论

种群

生物的进化以群体的形式进行,这样的一个群体称为种群。

个体

组成种群的单个生物。

基因

一个遗传因子。

染色体

包含一组的基因。

生存竞争,适者生存

对环境适应度高的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异

新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

综述

繁殖过程,会发生基因交叉,基因突变 ,适应度低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

遗传算法

遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。下面以0-1背包问题来讲解下遗传算法的步骤

  • 编码
  • 需要将问题的解编码成字符串的形式才能使用遗传算法。最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。将0-1字符串作为0-1背包问题的解就属于二进制编码。

  • 选择
  • 选择一些染色体来产生下一代。一种常用的选择策略是比例选择。也就是轮盘赌算法,如下图所示

    群体中每一染色体指定饼图中一个小块。块的大小与染色体的适应性分数成比例,适应性分数愈高,它在饼图中对应的小块所占面积也愈大。为了选取一个染色体,要做的就是旋转这个轮子,直到轮盘停止时,看指针停止在哪一块上,就选中与它对应的那个染色体。

    若产生随机数为0.81,则6号个体被选中。

    // 轮盘赌代码示意
    /*
    * 按设定的概率,随机选中一个个体
    * P[i]表示第i个个体被选中的概率
    */
    int RWS()
    {
        m =0;
        r =Random(0,1); //r为0至1的随机数
        for(i=1;i<=N; i++)
        {
            /* 产生的随机数在m?m+P[i]间则认为选中了i
             * 因此i被选中的概率是P[i]
             */
            m = m + P[i];
            if(r<=m) return i;
        }
    }
    
  • 交叉
  • 2条染色体交换部分基因,来构造下一代的2条新的染色体。父辈染色体00000|011100000000|1000011100|000001111110|00101随机交叉遗传00000|000001111110|1000011100|011100000000|00101

  • 变异
  • 新产生的染色体中的基因会以一定的概率出错,称为变异。变异前: 000001110000000010000变异后: 000001110000100010000我们认为染色体交叉的概率为Pc,染色体变异的概率为Pm。适应度函数:用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。

    遗传算法核心表示

    /**
     * 交叉遗传的概率Pc
     * 遗传变异的概率Pm
     * 种群规模M
     * 终止进化代数G
     * 当产生出一个个体的适应度超过给定Tf,则终止进化
     */
     步骤1
     初始化产生 Pc Pm M G Tf参数并随机生成第一代种群population,简称P1
     初始化P = P1
     do {
     	计算P中每一个个体的适应度F(i)
     	初始化空种群newP
     	do {
     		根据适应度比例选择算法选择出2个个体
     		if (rnd1 < Pc) {
     			进行交叉操作
     		}
     		if (rnd2 < Pm) { 进行变异操作 } 将两个操作后的个体放进newP中,即产生的新个体进入新的种群 } until (M个个体被创建) P = newP } until(任何染色体满足适应度或者繁殖代数>G)
    

    在这里我们看到了,这个随机选择以及产生后代的方式需要斟酌,如果设定的不好,那么很有可能这个种族最后就灭绝了,算个说话也就是我们没有得到我们的解。大自然这里还有一个规律叫做:物竞天择 适者生存在我们这里也需要对算法进行优化:择优 为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。

    具体实例

  • 理解实例
  • 求 f(x1, x2) = x1^3 + x2^2 + (x1 * (x1 – x2))的最大值,其中x1属于{-5, -3, 1, 3, 5}, x2属于{0, 2, 4}当然这个题目解法很多,穷举方法也非常的迅速。这个例子为了更加透彻的理解遗传算法。步骤1 编码我们此处定义隐射关系为[[0] = -5,[1] = -3,[2] = 0,[3] = 1,[4] = 2,[5] = 3,[6] = 4,[7] = 5]8可以用4位二进制表示,而x1和x2则用8位二进制即可完成验证比如{0110|0110}则表示[x1 = 3, x2 = 4]步骤2 生成种群,注意生成种群的数量以及作用域关系,写一段js代码来进行测试

    生成个体

    步骤3 随机选择父代进行通过交叉和变异生成子代(选出适应度较高的进行)

    产生多代并得到最后结果

    150

    代码示意,因为没有变异以及编码是否可以有更好的办法,所以只为显示整体过程

    console.log(&34;遗传算法&34;);
    var everyone = [];
    var number = 200;
    function in_array(search, array){
        for(var i in array){
            if(array[i]==search){
                return true;
            }
        }
        return false;
    }
    var genChromosome = function(scope) {
        var timestamp = new Date().getTime();
        var index = Math.ceil(Math.random() * timestamp) % scope.length;
        var chromosome = scope[index].toString(2);
        while (chromosome.length < 4) {
            chromosome = &34;0&34; + chromosome;
        }
        return chromosome;
    }
    
    // 计算每个的适应度
    var calFitness = function(omo) {
        var codes = [-5, -3, 0, 1, 2, 3, 4, 5];
        var arr1 = [-5, -3, 1, 3, 5];
        var arr2 = [0, 2, 4];
        var x1 = codes[parseInt(omo.substr(0, 4), 2)];
        var x2 = codes[parseInt(omo.substr(4, 4), 2)];
        if (x1 != undefined && x2 != undefined && in_array(x1, arr1) && in_array(x2, arr2)) {
            return x1 * x1 * x1 + x2 * x2 + (x1 * (x1 - x2));
        }
        return -9999;
    }
    
    function sortNumber(a,b) 
    { 
        return a - b 
    } 
    
    $(&39;genUnit&39;).click(function() {
        $(&39;geti&39;).html(&39;&39;);
        var scope1 = [0, 1, 3, 5, 7];
        var scope2 = [2, 4, 6];
        // 生成50组个体
        everyone = [];
        for (var i = 0; i < number; i++) {
            var new_omo = genChromosome(scope1) + genChromosome(scope2);
            everyone.push (new_omo);
        }
        for (var i = 0; i < everyone.length; i++) {
            $(&39;geti&39;).append(everyone[i] + &34; &34;);
            if ((i + 1) % 10 == 0) {
                $(&39;geti&39;).append(&34;
    &34;);
            }
        }
    });
    
    // 交叉函数
    var cross = function(omo1, omo2) {
        // 针对这个,四位是一个染色体特征控制
        var ret = &34;&34;;
        var timestamp = new Date().getTime();
        var rnd = Math.ceil(Math.random() * timestamp) % 4;
        if (rnd <= 1) {
            // 互换前四位
            for (var i = 0; i < 4; i++) {
                var tmp = omo1[i];
                omo1[i] = omo2[i];
                omo2[i] = tmp;
            }
        } else if (rnd <= 3) {
            // 互换后四位
            for (var i = 4; i < 8; i++) {
                var tmp = omo1[i];
                omo1[i] = omo2[i];
                omo2[i] = tmp;
            }
        }
        var rnd_next = Math.ceil(Math.random() * timestamp) % 2;
        if (rnd_next == 0) {
            ret = omo1;
        } else {
            ret = omo2;
        }
        return ret;
    }
    // 变异函数
    var variation = function(omo1, omo2) {
        // 变异某一位,然后做交叉运算
        // 这里暂时不需要,所以直接进行选择
        var timestamp = new Date().getTime();
        var rnd_next = Math.ceil(Math.random() * timestamp) % 2;
        if (rnd_next == 0) {
            ret = omo1;
        } else {
            ret = omo2;
        }
        return ret;
    }
    // 判断结束
    var finish = function() {
        // 这里直接看第五十代
    }
    
    $(&39;genNextUnit&39;).click(function() {
        if (everyone.length == 0) {
            return
        }
        // 至少5代且满足best适应值占75%或最多50代
        var g_num = 0;
        while (g_num < 50) {
            // 假设淘汰20%,最优的保留,剩下随机
            var fitness_score = [];
            for (var i = 0; i < everyone.length; i++) {
                fitness_score.push(parseInt(calFitness(everyone[i])));
            }
            fitness_score.sort(sortNumber);
            var over = Math.ceil(fitness_score.length * 0.2)
            for (var i = 0; i < over; i++) {
                fitness_score.shift();
            }
            var best = fitness_score[fitness_score.length - 1];
            // 生成子代
            var new_generation = [];
            while (new_generation.length < number) {
                var curr_unit;
                // 选择
                var timestamp = new Date().getTime();
                var choose_fitness1 = everyone[Math.ceil(Math.random() * timestamp) % everyone.length];
                var choose_fitness2 = everyone[Math.ceil(Math.random() * timestamp) % everyone.length];
                if (calFitness(choose_fitness1) == best && calFitness(choose_fitness2) == best) {
                    // 进行交叉
                    curr_unit = cross(choose_fitness1, choose_fitness2)
                    if (Math.ceil(Math.random() * timestamp) % 100 < 2) {
                        // 进行变异
                        curr_unit = variation(choose_fitness1, choose_fitness2)
                    }
                } else if (Math.ceil(Math.random() * timestamp) % 100 > 50) {
                    // 进行交叉
                    curr_unit = cross(choose_fitness1, choose_fitness2)
                    // 进行变异
                    if (Math.ceil(Math.random() * timestamp) % 100 < 2) {
                        // 进行变异
                        curr_unit = variation(choose_fitness1, choose_fitness2)
                    }
                }
                if (curr_unit != undefined) {
                    if (calFitness(curr_unit) > -9999) {
                        new_generation.push(curr_unit);
                    }
                }
            }
            everyone = new_generation;
            g_num = g_num + 1;
        }
        var fitness_score = [];
        for (var i = 0; i < everyone.length; i++) {
            fitness_score.push(parseInt(calFitness(everyone[i])));
        }
        console.log(everyone[0]);
        fitness_score.sort(sortNumber);
        var best_number = fitness_score[fitness_score.length - 1];
        $(&39;zidai&39;).html(best_number);
        // 01110010
    });

    文章评论